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EXPERIMENTAL INVESTIGATION OF THE JET-BOUNDARY 

CONSTRICTION CORRECTION FOR A MODEL SPANNING 

A CLOSED CIRCULAR TUNNEL 

By M. Tucker and M. D. Rousso 

SUMMARY 

The average low-speed Jet-boundary oonstrlction correction is 
presented for a large model spanning a closed circular tunnel. The 
experimentally determined variation of the local oonstrlction cor- 
rection with spanwise and chordwise location is also shown, A "brief 
comparison with existing theory is given for the constriction cor- 
rection and the induced-curvature correction resulting from lifting 
action. 

INTRODUCTION 

The large size of the power-plant installations investigated in 
the NACA Cleveland altitude wind tunnel relative to the tunnel 
dimensions results in large wall-interference effects. In order to 
determine accurately the free-stream drag and the critical speeds of 
such installations from tunnel measurements, the velocity increment 
resulting from the oonstrlction effect of the tunnel walls must he 
evaluated. 

The methods of references 1 and 2 may be used to ohtain the 
average velocity increments for "bodies of relatively simple shape in 
two- and three-dimensional flow. By use of more rigorous methods, 
reference 3 presents the local velocity corrections for symmetrical 
airfoils at zero lift in two-dimensional flow. The existing theory 
is inadequate, however, for the rigorous determination of the local 
or the average constriction corrections for bodies of arbitrary shape 
in three-dimensional flow. The tunnel boundary constriction was 
therefore experimentally investigated for a representative model 
spanning a closed circular tunnel. 
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The primary purpose of the experiments was to evaluate the low- 
speed jet-boundary constriction, or solid blockage, correction, that 
is, the velocity increment at the model due to the accelerating effect 
of the walls on the flow past the model at zero lift. The effect 
of the induced curvature of flow resulting from lifting action was 
obtained at the same time by testing the model at various angles 
of attack. The experimental results were correlated with the results 
obtained by existing theory. 

PROCEDURE 

The model Investigated (figs. 1 and 2) has a wing span of 28 inches 
and an over-all length of 57 inches. Static-pressure taps are fitted 
along the model at the sections indicated in figure 3. The model 
surface pressures and the referenoe upstream dynamic pressure were 
obtained at speeds up to 150 feet per second for the model spanning 
a circular duct (fig. 4) with a diameter approximately one-eighth 
that of the altitude wind tunnel. The ratio of model cross-sectional 
area to duct cross-sectional area was 0.16, which is typical of the 
values encountered in investigations of full-scale installations 
in the altitude wind tunnel. The model was then mounted between end 
plates (fig. 2) to simulate an aspect ratio of 5,6 and investigated in 
the altitude wind tunnel to obtain the corresponding surface pressures 
and reference upstream dynamic pressures. The end-plate dimensions 
were determined using figure 11 of reference 4. The altitude wind 
tunnel with an area ratio of model cross section to tunnel cross 
section of 0.0024 was considered to simulate a free stream. Herein- 
after "free stream" will refer to "altitude wind tunnel" and "tunnel" 
will refer to "duct." 

The Jet-boundary constriction correction is oustomarily presented 
for zero lift conditions as the quantity (v^ - v^/V where 

vt  velocity at surface of body in tunnel 

v^  velocity at surface of body in free stream 

V   free-stream velocity 

The velocity ratios v^/V and Vj/V, and' therefore the constriction 

correction, can be determined from the total and static-pressure 
measurements obtained from the tunnel and free-stream tests, 
respectively. 
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The effect of lift must also "be considered in correcting test 
conditions to free-stream conditions. For the case of a model 
spanning the walls of a closed tunnel, the effect of lifting action 
is to induce a curvature of the flow about the model such as to 

w increase the lift in the tunnel as compared with the lift in the 
free stream. In order to obtain data on the induced-curvature 
effects, the model was investigated in the tunnel and in the free 
stream at various angles of attack. The angle of attack was taken 
as the angle between the axis of the duct and the straight-line 
portion of the model fuselage. 

A preliminary survey of the tunnel velocities with the model 
in place was made to determine the proper axial location (fig. 4) 
for measurement of the upstream velocity. Results of the survey 
are shown in figure 5. The dynamic pressure at station C was 
evidently influenced by the presence of the model. The dynamic- 
pressure increase from station A to station B would indicate 
a fairly rapid development of the boundary layer along the tunnel 
walls. Inasmuch as the entrance effect was probably small at 
station B, the velocity at this station was selected as being 
representative of the flow affecting the model and any further 
effect of velocity gradient along the tunnel was disregarded. 

RESULTS AND DISCUSSION 

Application of the Jet-boundary constriction correction to 
free-stream drag and critical-pressure-ooeffieient determinations 
involves the use of the square of the constriction-correction 
velocity ratios. For convenience in application therefore, the 
constriction correction is presented as a ratio of the dynamic- 
pressure coefficients for the model in the free stream and in the 
tunnel. The dynamic-pressure coefficient is defined as q/q,0 
where 

q.   model-surface dynamic pressure 

q   upstream dynamic pressure 
o 

The jet-boundary constriction factor f is expressed as the ratio 

(q/cLo) free stream 

(q/q ) tunnel 

From the definition of boundary-constriction effects, this ratio 
is to be evaluated at zero lift. The constriction-correction 
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velocity ratlos may be calculated from the constriction factor 
by the following relation: 

(2) 

The Jet-boundary constriction factor defined in equation (1) 
has been plotted in figure 6 for the various model sections at 
several angles of attack. Chordwlse locations of the pressure taps 
used are Indicated by the circles. Zero total lift for the model 
occurred at an angle of attack of approximately 0°. Data for the 
other angles of attack were included in these plots Inasmuch as such 
data are not generally available in the literature and may be of 
interest. As shown in figure 6, the constriction factor varies 
appreciably with chordwlse and spanwise location. The chordwlse 
variation of the constriction factor over the wing surface for the 
most part appears consistent with the variation of wing thickness 
along the chord. Similar conclusions might be drawn for the varia- 
tion of the constriction factor over the nacelle surfaces. The 
constriction factors obtained for the fuselage lower surface at 
section 5 (fig. 6(2)) seem extremely high when compared with values 
obtained at nacelle seotion 4 (fig. 6(j)). The fuselage lower- 
surface velocity distributions obtained from the tunnel tests were 
irregular but consistent. The data for the faired curves of fig- 
ure 6 were averaged from tests at several airspeeds. 

A summary of the average constriction-factor values of the 
curves at an angle of attack of 0° is given in the following table: 

Wing: 
Upper surface 0.77 
Lower surface 79 
Average 78 

Nacelles: 
Station 1 84 
Station 2 81 
Station 3 81 
Station 4 81 
Average 82 

Fuselage: 
Upper surface 84 
Lower surfaoe 97 
Average  91 

The Jet-boundary constriction factor representative of the model 
taken as the average of the values for the wing, the nacelles, and 
the fuselage is 0.64. 

in 

in 
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Frcm data obtained at various angles of attack, the effects 
of the constriction and induced curvature of flow on the lift-curve 
slope can be isolated. From integration of the dynamic-pressure 

u, coefficients, the ratio of the lift-curve slope for the model in 
the tunnel to the lift-ourve slope of the model in the free stream 
vas found to "be 1.76. The lift curves for these two conditions are 
shown in figure 7. 

COMPARISON WITH TXTSTIKS THEORY 

Constriction 

A comparison of the experimental values with the results of the 
existing theory may "be of interest. In figure 7(a) of reference 3, 

the velocity ratio (v^ - v^/V is given as a function of to/h 

for symmetrical airfoils of 12- and 24-percent thickness where 

t   maTlTTnim airfoil thickness 

o   airfoil chord 

h   tunnel height 

When the applicable value of tc/h2 is 0.066, the ratio (vt - v±)/V 
is approximately 0.028. The average constrlotion factor f obtained 
for the wing sections, which have an average thickness of approxi- 
mately 15 percent, was 0.78. By use of equation (2) and an experi- 
mentally obtained value for the wing of vi/V > 1.12, the corre- 

sponding value of the ratio (v^ - v±)/V   beoomes 0.148, which is 
about five times greater than the theoretical value obtained for a 
wing in two-dimensional flow. The fuselage and nacelles apparently 
have a large effect on the constriction velocity about the wings. 

The question thus arises as to the possibility of computing 
the incremental velocities (that is, increment due to the tunnel) 
for the component parts of the model and combining these by super- 
position to obtain the over-all velooity increment. The component 
velocity-increment ratios for incompressible flew were obtained 
from equation (22) of reference 2, which is given in the notation 
of this paper for a tunnel having a height-to-breadth ratio of 0.7 
as follows: 

Vt * vi    km (3) 

(bh)3/2 
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where 

E   0.74 for two-dimensional wing spanning tunnel "breadth 
0.52 for two-dimensional wing spanning tunnel height 
0.96 for streamlined body of revolution jo 

in 

m   volume of model or component part 

b   breadth of tunnel test section 

h  height of tunnel test section 

The assumption was made that equation (3) is applicable to a closed 
circular tunnel, the area hh being the cross-sectional area. The 
value.of K for a wing spanning a circular tunnel was taken as 
0.63, the average of the values listed for a two-dimensional wing. 

For the purpose of calculation, the model (figs. 1 and 2) is 
regarded as consisting of two parts: (l) the wing and (2) the 
fuselage and the nacelles. The volumes of the wing, the fuselage, 
and the nacelles were 0.225, 0.698, and 0.250 cubio foot, respectively. 
The cross-sectional area of the circular duct was 4.79 square feet. 
From equation (3) the ratio (vt - VjJ/V for the wing is 0.0135 
when K is 0.63; similarly, the ratio (v^ - VjJ/V for the fuselage 
plus the nacelles is 0.0868 when K 1B 0.96. The assumption is now 
made that the effective velocity-Increment ratio is the sum of these 
ratios or 0.100. The ratio Vj/V for the model was 1.06. When the 
wake constriction is assumed to be negligible, the corresponding 
constriction factor f from equation (2) is 0.835, which is in 
agreement with the experimental value of 0.84. 

In view of the assumptions entailed in the calculation, the 
supposition that such agreement between calculated and experimental 
values will be obtained for other models cannot be made. The unrelia- 
bility of the various theories when applied to the component parts of 
large models is shown by a comparison of the values 0.0135 and 0.028, 
obtained from references 2 and 3, respectively, for the wing velocity 
ratio (vt - v±)/V. 

Induced Curvature 

For a model spanning a closed tunnel, lifting action induces 
a curvature of flow ahout the model. The induced-curvature correc- 
tion is defined as the ratio of lift of a model in a tunnel to its 
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free-stream lift at the same geometric angle of attack. The theo- 
retical induced-curvature corrections obtained "by Bosenhead for a 
flat plate in a two-dimensional tunnel are given in figure 22 of 
reference 1 as a function of lift coefficient and chord to tunnel- 
height ratio. The analysis given in reference 5 indicates that, as 
far as induced curvature effects are concerned, the equivalent two- 
dimesnional height for a wing spanning a closed oircular tunnel is 
0.843 times tunnel diameter. For the model investigated, the appli- 
cable chord-height ratio is 0.61$ for small lift coefficients, the 
theoretical induced-curvature correction for a flat plate in two- 
dimensional flow is therefore 1.13. 

A wing spanning a closed circular tunnel is shown in reference 5 
to approximate a wing of infinite aspect ratio. If the lift-curve 
slope for the model in the free stream is corrected to infinite aspect 

ratio using the E factor fvlnS semiperlmeterN of referenoe 6 tne 
\   wing span    / 

ratio of lift-curve slope for the model in the tunnel at Infinite 
aspect ratio to lift-curve slope for the model in the free stream at 
infinite aspeot ratio becomes 1.30. Part of this increase of lift 
in the tunnel as compared with the lift in the free stream results 
from the increased dynamic pressure acting on the model in the tunnel 
because of the tunnel-wall constriction. From the definition of con- 
striction factor f, it is seen that this increased dynamic pressure 
is l/f times the dynamic pressure acting on the model in the free 
stream. The rest of the increase of lift in the tunnel is then 
attributable to the induced curvature of flow. The induced-curvature 
correction is therefore obtained by multiplying the constriction 
factor f by the ratio of lift-curve slopes. 

A question arises as to the proper value of constriction factor 
to be used in obtaining the induced-curvature correction. Inasmuch 
as the nacelles and fuselage contribute to the lift, it appeared 
reasonable to use a weighted average of the constriction factors of 
the wing, the nacelle, and the fuselage based on the percentage of 
lift contributed by each. For the model investigated, the wing con- 
tributed approximately 76 percent of the total lift. When a weighted 
average constriction factor of 0.80 was used, the induced-curvature 
correction for the model was 1.30 X 0.80 = 1.04 as compared with 
the theoretical correction of 1.13. The effect of the tunnel-wall 
boundary layer, which tends to cause a loss of lift at the wing-tip 
sections, may partly account for the discrepancy in the theoretical 
and experimental values. Quantitative agreement between the cor- 
rections for a flat plate and a model of the type investigated could 
not be expected. 
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SUMMARY OF RESULTS 

The results of this experimental investigation on Jet-boundary 
constriction corrections may be summarized as follows: 

1. The average low-speed jet-boundary constriction factor f 

(q/q,0) free stream 
defined as  i:  was 0.84 for the configuration tested, 

(<lA0) tunnel 
in which the model spanned a circular tunnel and the ratio of model 
cross-sectional area to tunnel cross-sectional area was 0.16. Devi- 
ations of the local constriction factor from the average were appre- 
ciable. 

2. Theoretical constriction corrections for the component parts 
of the model did not oheck the experimental values, which indicates 
that the mutual interference of these parts was apparently large. 
The over-all constriction correction obtained from existing theory 
could be brought into agreement with the experimental value, however, 
by use of the principle of superposition. 

3. The effect of the induoed curvature of flow on the lift 
obtained from existing theory for a flat plate in a two-dimensional 
tunnel was in qualitative agreement with the experimental results 
obtained for the model spanning a closed circular tunnel. 

Flight Propulsion Research Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, March 16, 1948. 
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